Circles 1

Draw a circle and mark 3 points: A, B and C anywhere on the circumference. Join the points with a ruler to make a triangle.

Measure the angles $\angle A B C, \angle B C A$ and $\angle C A B$ on your circle.
Measure the angles $\angle A B C=$ \qquad $\angle B C A=$ \qquad $\angle C A B=$ \qquad
Mark another point on the circumference between points A and C, and call it point D. Draw a ruler line from A to D, and from B to D.

Measure the angles $\angle A B D, \angle B D A$ and $\angle D A B$ on your circle.
Measure the angles $\angle \mathrm{ABD}=$ \qquad $\angle B D A=$ \qquad $\angle D A B=$ \qquad

What do you notice?

Circles 2

Draw a circle. Draw a ruler line across the diameter, marking the points where the diameter meets the circumference as A and B.

Mark a third point C anywhere on the circumference, and join C to A and C to B using a ruler.

Measure the angle $\angle B C A$ on your circle.
$\angle B C A=$ \qquad
Mark point D anywhere on the opposite side of the circumference from C, and draw lines $A D$ and BD.

Measure the angle $\angle B D A$ on your circle.
$\angle B D A=$ \qquad
What do you notice about $\angle B C A$ and $\angle B D A$?

Test your ideas with other triangles.

Answers

Circles 1

The angles inside each triangle should add up to 180°.
Angle $\angle B C A$ and $\angle B D A$ should be the same.

Circles 2

The angles $\angle B C A$ and $\angle B D A$ are both 90°.
Any triangle with all 3 vertices on the circumference of a circle, where one side is the diameter will be a right-angled triangle.

