Year 4 Maths

Fractions - Including Equivalent Fractions

Day 1 - Equivalent Fractions

Follow the link below to a lesson all about tenths and hundredths.

Now have a go Day's questions

Day 1

Recognise tenths and hundredths
Rose
Moths -The hundred square represents 1 whole.
What fraction of each hundred square is shaded?
a)

b)

c) \begin{tabular}{|l|l|l|l|l}
\hline \& \&

\hline

 $\mathrm{H}_{-1} \mathrm{H}_{-1}$ - + H $\rightarrow+-1+$

-1 \&

\hline \&

\hline

\hline \& \& \& \&

\hline
\end{tabular}

d)

(2)

Here is a hundred square.

What fraction of the whole does each represent?
a) 4 full rows $=$

b) 6 full columns $=$

c) 13 squares $=$ \square
d) 2 full rows and 5 squares $=$

e) 3 full columns and 8 squares $=$

(3) Complete the sentences.
a) 4 tenths is equivalent to \square hundredths.
b) 70 hundredths is equivalent to \square tenths.
c) 5 tenths is equivalent to \square hundredths or 1 \square

(5) Tick the hundred squares with $\frac{23}{100}$ shaded.

(6)

b)

d)

How many ways can you partition $\frac{73}{100}$?

Day 2 - Equivalent Fractions

Follow the link below to a lesson all about tenths and hundredths.

Now have a go Day's questions

Day 2

Equivalent fractions (1)Shade the bar models to represent the equivalent fractions.

$$
\frac{1}{2}=\frac{3}{6}
$$

$$
\frac{1}{2}=\frac{5}{10}
$$

c)

$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

2.

Use the fraction wall to complete the equivalent fractions.

$\frac{1}{2}$				$\frac{1}{2}$			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

a) $\frac{1}{2}=\frac{\square}{4}$
c) $\frac{2}{4}=\frac{4}{\square}$
e) $\frac{\square}{8}=\frac{3}{4}$
b) $\frac{1}{2}=\frac{\square}{8}$
d) $\frac{2}{8}=\frac{\square}{4}$
f) $\frac{2}{2}=\frac{\square}{4}=\frac{\square}{8}$a) Label the fractions on the fraction wall.

b) Use the fraction wall to complete the equivalent fractions.

$\frac{3}{\square}=\frac{6}{\square}=\frac{9}{\square}=1$

Here is a fraction wall.

$\frac{1}{2}$			$\frac{1}{2}$			
$\frac{1}{3}$		$\frac{1}{3}$			$\frac{1}{3}$	
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$		
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	

Is each statement true or false? Tick your answers.

a) $\frac{1}{2}$ Is equivalent to $\frac{3}{6}$	True	False	
b) $\frac{2}{3}$ Is equivalent to $\frac{3}{4}$	\square	\square	$\square \checkmark$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$	\square	\square	$\square \checkmark$
d) $\frac{2}{3}$ Is equivalent to $\frac{4}{5}$	\square	\square	$\square \checkmark$
e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$	\square	\square	$\square \square$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$	\square	\square	\square

Write your own equivalent fractions statements. Ask a partner to say If they are true or false.
5) Are the statements always, sometimes or never true? CIrcle your answer.
Draw a diagram to support your answer.
a) The greater the numerator, the greater the fraction.

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

always
sometimes
never

Day 3 - Equivalent Fractions

Follow the link below to a lesson all about tenths and hundredths.

Now have a go Day's questions

Day 3

Equivalent fractions (2)
I) Shade the dlagrams to help you complete the equivalent fractions.
The first one has been done for you.

$$
\frac{1}{3}=\frac{2}{6}
$$

Draw a diagram to show that $\frac{3}{4}=\frac{6}{8}$

3
,

$\frac{1}{4}$	$\frac{3}{21}$ $\frac{4}{10}$ $\frac{10}{15}$ $\frac{1}{7}$

4)

Complete the equivalent fractions.
a) $\frac{1}{5}=\frac{\square}{10}$
d)

g) $\frac{8}{12}=\square$
b) $\frac{4}{5}=\square 10$
e) $\frac{6}{8}=3$
h) $=\frac{2}{25}$

f) $\frac{8}{12}=\frac{\square}{3}$
a) Write the fractions in the correct place on the sorting diagram.

| $\frac{8}{24} \frac{3}{12}$ | $\frac{5}{15}$ | $\frac{6}{24}$ |
| :--- | :--- | :--- |$\frac{4}{12} \frac{9}{36} \frac{4}{16}$

	equivalent to $\frac{1}{3}$	equivalent to $\frac{1}{4}$
odd denominator		
even		
denominator		

b) Are any of the boxes empty?

Why do you think this is?
Talk about your answer with a partner.
(6) Find three ways to make the fractions equivalent.

(7) Eva and Ron have a baguette each. The baguettes are the same size. Eva cuts her baguette into 8 equal pleces.

How many equal pleces has Ron cut his baguette into?

Ron has cut his baguette into \square equal pleces.

Reasoning and problem solving questions

1. Explain how the diagram shows both $\frac{2}{3}$ and $\frac{4}{6}$

2. Which is the odd one out? Explain why

3.

Teddy makes this fraction:

Mo says he can make an equivalent fraction with a denominator of 9

Dora disagrees. She says it can't have a denominator of 9 because the denominator would need to be double 3

Who is correct? Who is incorrect? Explain why.

Answer here

4. Alex and Tommy are using number lines to explore equivalent fractions.

Alex

Who do you agree with? Explain why.

Answer here

ANSWERS

2.

Here is a hundred square.

What fraction of the whole does each represent?
a) 4 full rows $=\frac{2}{5}$
b) 6 full columns $=\frac{3}{5}$
c) 13 squares $=\frac{13}{150}$
d) 2 full rows and 5 squares $=\frac{1}{4}$
e) 3 full columns and 8 squares $=\frac{19}{50}$
(3) Complete the sentences.
a) 4 tenths is equivalent to 40 hundredths.
b) 70 hundredths is equivalent to 7 tenths.
c) 5 tenths is equivalent to 50 hundredths or 1 halc
(4)

One row is one tenth and one column is one tenth, so if I colour one row
and one column on my hundred square I will have
shown 2 tenths.

Is Dexter correct? _Min
Explain your answer
You may use the hundred square to help you.

Thare would anly be 19 squamen sbaded
\qquad
(5) Tick the hundred squares with $\frac{23}{100}$ shaded.

$\sqrt{ }$

| | | | | |
| :--- | :--- | :--- | :--- | :--- | | | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |

 \begin{tabular}{|l|l|l|ll}
\hline \& \& \& \&

\hline \& \& \& \&

\hline

\hline \& \& \& \& \&

\hline \& \& \& \& \&

\hline
\end{tabular}

(6) Complete the part-whole models.
a)

c)

b)

d)

Who is correct? Both
How many ways can you partition $\frac{73}{100}$?

Equivalent fractions (1)

shade the bar models to represent the equivalent fractions.

(1) | 10 | $\frac{1}{10}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

c) \begin{tabular}{|l|l|l|l|l|}
\hline$\frac{1}{5}$ \& $\frac{1}{5}$ \& $\frac{1}{5}$ \& $\frac{1}{5}$ \& $\frac{1}{5}$

\hline

\hline$\frac{1}{10}$ \& $\frac{1}{10}$

\hline
\end{tabular}

\qquad
$\frac{4}{5}=\frac{8}{10}$
$\frac{6}{8}=\frac{3}{4}$
(2)

Use the fraction wall to complete the equivalent fractions.

$\frac{1}{2}$				$\frac{1}{2}$			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

a) $\frac{1}{2}=\frac{2}{4}$
b) $\frac{1}{2}=\frac{4}{8}$
c) $\frac{2}{4}=\frac{4}{8}$
d) $\frac{2}{8}=\frac{\square}{4}$
e) $\frac{6}{8}=\frac{3}{4}$
f) $\frac{2}{2}=\frac{4}{4}=\frac{8}{8}$a) Label the fractions on the fraction wall.

1								
$\frac{1}{3}$		$\frac{1}{3}$			$\frac{1}{3}$			
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$			$\frac{1}{6}$
$\frac{1}{9}$								

b) Use the fraction wall to complete the equivalent fractions.

$$
\begin{aligned}
& \frac{1}{3}=\frac{2}{6}=\frac{3}{\sqrt{9}} \quad \frac{2}{3}=\frac{4}{\sqrt{6}}=\frac{6}{9} \\
& \frac{3}{\square 3}=\frac{6}{\square 6}=\frac{9}{\square 9}=1
\end{aligned}
$$Here is a fraction wall.

$\frac{1}{2}$			$\frac{1}{2}$				
$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{5}$	$\frac{1}{5}$	$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$		

Is each statement true or false? Tick your answers.
a) $\frac{1}{2}$ is equivalent to $\frac{3}{6} \quad \square$
b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$
d) $\frac{2}{3}$ Is equilvalent to $\frac{4}{5}$
e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements. Ask a partner to say if they are true or false.
(5)

Are the statements always, sometimes or never true? CIrcle your answer.

Draw a dlagram to support your answer.
a) The greater the numerator, the greater the fraction.

always	sometimes	never
e.g. $\frac{4}{5}>\frac{1}{5}$	GUT	$\frac{1}{2}>\frac{2}{5}$
WITM		ITIIT
M1]1]		6V6 [1

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.
always
sometimes
never
$1 / 1 / 1 / / 1$
No matter how many parts it's spite inte, the number shoded (rumevator) will be halt be trotal porb (derominobr),

Equivalent fractions (2)Shade the diagrams to help you complete the equivalent fractions.
The first one has been done for you.

$\frac{1}{3}=\frac{3}{6}$

(2)

Draw a dlagram to show that $\frac{3}{4}=\frac{6}{8}$

3	67	18
7	91	97

Complete the equivalent fractions.
a) $\frac{1}{5}=\frac{2}{10}$
d) $\frac{3}{10}=\frac{9}{30}$
g) $\frac{8}{12}=\frac{2}{3}$
b) $\frac{4}{5}=\frac{8}{10}$
e) $\frac{6}{8}=\frac{3}{4}$
h) $\frac{2}{5}=\frac{10}{25}$ $\longrightarrow \longrightarrow$

1) $\frac{1}{7}=\frac{4}{28}$a) Write the fractions in the correct place on the sorting diagram.

	equivalent to $\frac{1}{3}$	equivalent to $\frac{1}{4}$	
odd denominator	$\frac{5}{15}$	$\frac{3}{9}$	
even denominator	$\frac{8}{24}$	$\frac{4}{12}$	$\frac{3}{12}$
$\frac{6}{24}$	$\frac{9}{36}$		

b) Are any of the boxes empty?

Why do you think this is?
Talk about your answer with a partner.

6
Find three ways to make the fractions equivalent.
various anowers e.g.
a) $\frac{\mathbf{2}}{2}=\frac{\mathbf{4}}{4}$

b) $\frac{\mathbf{1}}{5}=\frac{\mathbf{4}}{20}$

$\frac{\mathbf{1}}{410}=\frac{\mathbf{4}}{40}$
c) $\frac{2_{2}}{3}=\frac{6}{9}$

7. Eva and Ron have a baguette each.

The baguettes are the same size.
Eva cuts her baguette into 8 equal pleces.

How many equal pleces has Ron cut his baguette into?

Ron has cut his baguette into \qquad equal pleces.

Reasoning and Problem Solving answers

1. The diagram is divided in to six equal parts and four out of the six are yellow. You can also see three columns and two columns are yellow.
2.

This is the odd one out because the other fractions are all equivalent to $\frac{1}{2}$
3.

Mo is correct. He could make three ninths which is equivalent to one third.

Dora is incorrect.
She has a
misconception that you can only double to find equivalent fractions.
4. Alex is correct. Tommy's top number line isn't split into equal parts which means he cannot find the correct equivalent fraction.

