DAY 1

1. 4200
2. 1300
3. 1170
4. 50.922
5. $5 / 15=1 / 3$

DAY 3

1. 2815
2. 800
3. 40
4. 7395
5. 1.22
6. 396 r 7

DAY 5

1. 210
2. 2.55
3. 131,481
4. 11.895
5. 3815

Practice answers

P 1 The height of a door could be measured in metres (m) or centimetres (cm).
The volume of water in a glass would be

measured in millilitres (ml).
The length of a pencil point would be measured
in millimetres (mm).
The mass of a person would be measured in kilograms (kg).
The length of a reading book would be measured in centimetres (cm).
The mass of a rubber would be measured in grams (g).
P 2 a) An elephant weighs approximately 5 tonnes.
b) An drinking glass holds approximately 0.21.
c) A man has a height of approximately 1.8 m .

P 5				
	mm	cm	m	km
	20000	200	0.2	
	41200	412	0.412	
	110000	1100	1.1	

P 6

Mr Smith needs to fill buckets of water. A large bucket holds 6 litres and a small bucket holds 4 litres. If a jug holds 250 ml and a bottle holds 500 ml suggest some ways of using the jug and bottle to fill the buckets.

There will be multiple ways to solve this. Here are some.

Small bucket:

- 2 bottles and 12 jugs
- 6 bottles and 4 jugs

Large bucket:

- 8 bottles and 8 jugs
- 6 bottles and 12 jugs

Evidence answers

ARE $130 \times 85 \mathrm{~m}=2550 \mathrm{~m}$ or 2.5 km

Daniel walks approximately 2500 m or 2.5 km to primary school. To estimate the distance to his brother's secondary school: $2.5 \times 9=22.5 \mathrm{~km}$

ARE 2 Assuming no rest breaks are taken. All answers are approximations only.
a) 30 km
b) 120 km
c) 840 km
d) 43800 km

ARE 3
a) True. 1.7 km and 1.700 km show the same amount in km and 1700 m is equal to 1.7 km .
b) False. $10001 \mathrm{~g}<10.1 \mathrm{~kg}<0.1$ tonnes

ARE 4 1) $0.111=$ Bottle D
$0.91=$ Bottle E
$150 \mathrm{ml}=$ Bottle B
$0.251=$ Bottle A
ARE 5
$775 \mathrm{ml}=$ Bottle C
2) a) Mass of one box: $2.35 \mathrm{~g} \times 38=89.3 \mathrm{~g}$ Mass of 30 boxes: 2.679 kg

Finlay has a piece of string which measures 0.9 m . He cuts off a piece measuring 15 cm and then cuts the remaining string into three equal pieces. How long is each piece?

25 cm or 0.25 m

Mo cycles 45 miles over the course of 3 days.

On day 1, he cycles 16 km.
On day 2 , he cycles 10 miles further than he did on day 1

How far does he cycle on day 3 ?

Give your answer in miles and in kilometres.

ARE 8
The distance between Cardiff and London is 240 km .

A car is travelling at 60 mph .
How long will it take them to get to London from Cardiff?

On day 1 he cycles

 $16 \mathrm{~km} / 10$ miles.On day 2 he cycles 32 km / 20 miles.

On day 3 he

 cycles 24 km / 15 miles.
$240 \mathrm{~km} \approx 150$

miles

$150 \div 60=2 \frac{1}{2}$
hours
Or
60 miles $\approx 96 \mathrm{~km}$
$240 \div 96=2 \frac{1}{2}$ hours

ARE 9

Chen, Megan and Sam have parcels.

Megan's parcel weighs 1.2 kg and Chen's parcel is 1500 g and Sam's parcel is half the weight of Megan's parcel. Write down some other statements about the parcels. How much heavier is Chen's parcel than Megan's?

Megan's $=1.2 \mathrm{~kg}$
Chen's $=1.5 \mathrm{~kg}$
Sam's $=0.6 \mathrm{~kg}$
Chen's weighs 300g more than Megan's. Other statements could include: Chen's parcel is $1 \frac{1}{2}$ times heavier than Sam's or Sam's weighs 0.6 kg less than Megan's.

A square has the perimeter of 12 cm . When 4 squares are put together, the perimeter of the new shape can be calculated. For
example:

What arrangements will give the maximum perimeter?

Problem solving answers

1) $42 \mathrm{~cm}(A)+22.5 \mathrm{~cm}(B)+47.5 \mathrm{~cm}(C)=112 \mathrm{~cm}$
2) $35 \mathrm{~cm}(A)+22.5 \mathrm{~cm}(B)+47.5 \mathrm{~cm}(C)=105 \mathrm{~cm}$
3) Various answers are possible to make a total length of 220 cm .

For example:
Parcel D height of $500 \mathrm{~mm}+$ parcel E length of $0.85 \mathrm{~m}+$ parcel F length of $850 \mathrm{~mm}=2.2 \mathrm{~m}$
Parcel D height of $500 \mathrm{~mm}+$ parcel E height of $50 \mathrm{~cm}+$ parcel F height of $1.2 \mathrm{~m}=2.2 \mathrm{~m}$
Parcel D height of $400 \mathrm{~mm}+$ parcel E length of $0.9 \mathrm{~m}+$ parcel F length of $900 \mathrm{~mm}=2.2 \mathrm{~m}$

