Year 6 - Area and Perimeter

What are area and perimeter?

- Area measures the space inside a shape (we often do this in squares)

- Perimeter is the distance around the outside of a shape

I do

- For the area of a rectangle, I multiply the width and height
- $7 \times 3=21$
- If the units were cm , the answer would be $21 \mathrm{~cm}^{2}$
- For the perimeter, you simply add up all of the edges
- $\mathbf{7}+\mathbf{3 + 7 + 3 = 2 0 (c m)}$

You do

- Hint: how do you know the values of the blank edges?

7 cm

12 cm

You do

- Hint: how do you know the values of the blank edges?
- Area $=84 \mathrm{~cm}^{2}$
- Perimeter $=38 \mathrm{~cm}$

You do

1) Find the area and the perimeter of each rectangle.
(a) 8 cm

(b)

(c)

(d) 3 cm
$7 \frac{1}{3} \mathrm{~cm}$
area
perimeter $=$ \square
area \square
\square
area \square
perimeter $=\square$

Area and perimeter of compound shapes

- Compound shapes means the shape can be broken up into simpler more familiar shapes

Area and perimeter of compound shapes

- Compound shapes means the shape can be broken up into simpler more familiar shapes
- We can break this irregular hexagon into 2 regular rectangles.
- Rectangle 1: Area $=4 \times 3=12 \mathrm{~cm}^{2}$
- Rectangle 2: Area $=4 \times 10=40 \mathrm{~cm}^{2}$
- Total area: $52 \mathrm{~cm}^{2}$
- Perimeter: $7+4+3+8+10+4=36 \mathrm{~cm}$
- The perimeter is still the outside of the whole shape, but it helps to divide into 2 parts to calculate the areas

You do

You do

- Area $=4 \times 4=16 \mathrm{~m}^{2}$
- $11 \times 10=110 \mathrm{~m}^{2}$
- Total area $=126 \mathrm{~m}^{2}$

- Perimeter:
- $11+6+4+4+15+10=50 \mathrm{~m}$

3) A rectangle has an area of $20 \mathrm{~cm}^{2}$. Its longer side is 8 cm .
(a) Find the length of the other side.
(b) Calculate its perimeter.

- With questions like these, we have to work backwards. It can be helpful to draw/label what we know.

- To calculate the area, we have to do 8 x ? $=20$ so we can work backwards. $20 \div 8=2.5 \mathrm{~cm}$

Finally, to work out the perimeter, we have to add up all the edges. $8+2.5+2.5+8=21 \mathrm{~cm}$

You do
 (4) A square has an area of $25 \mathrm{~cm}^{2}$. Find its perimeter.

- Hint: what rules do you know about squares?
- Answer on next page

You do

4 A square has an area of $25 \mathrm{~cm}^{2}$. Find its perimeter.

- In a square, all the sides must be the same length.
- Conveniently, 25 is a square number, meaning there is a whole number which multiplies by itself to make 25 .
- $5 \times 5=25$
- Therefore, each side is 5 cm . We need to find the perimeter.

- A square has 4 sides, each of 5 cm so the perimeter $=20 \mathrm{~cm}$

Area of a rhombus

- In a rhombus, all of the sides are the same length, but they are at an angle. As a result, we can just calculate the area as if it was a normal rectangle, but using the measurements given.

$$
10 \mathrm{~cm} \times 7 \mathrm{~cm}=70 \mathrm{~cm}^{2}
$$

Area of a rhombus - You do

Area of a rhombus - You do

$6 \mathrm{~cm} \times 8 \mathrm{~cm}=48 \mathrm{~cm}^{2}$

Area of a triangle

- A triangle has half the area of a rectangle with the same measurements

- In this example, the area of the rectangle would be $24 \mathrm{~cm}^{2}$

The area of the triangle is half the area of the large rectangle.

```
area of rectangle
    =(b\timesh) cm
```

- The area of the triangle is $12 \mathrm{~cm}^{2}$

You do

1 Find the area of each triangle.
(a)

(b)

You do

-A) $72 \mathrm{~cm}^{2}$
1 Find the area of each triangle.
(a)

(b)

This shape is made out of four identical curves.

Reasoning

Not actual size

The perimeter of the shape is 28 centimetres.
A new shape is made out of curves of the same size

What is the perimeter of the new shape?

This shape is made out of four identical curves.

Reasoning

- 4 curves $=28 \mathrm{~cm}$
- 1 curve $=7 \mathrm{~cm}$
- The new shape has 6 curves
- $6 \times 7 \mathrm{~cm}=42 \mathrm{~cm}$

The perimeter of the shape is 28 centimetres.
A new shape is made out of curves of the same size.

What is the perimeter of the new shape?

